Sharp High-Frequency Estimates for the Helmholtz Equation and Applications to Boundary Integral Equations
نویسندگان
چکیده
We consider three problems for the Helmholtz equation in interior and exterior domains in R, (d = 2, 3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for exterior Helmholtz problems.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملDirectly Derived Non-Hyper-Singular Boundary Integral Equations for Acoustic Problems, and Their Solution through Petrov-Galerkin Schemes
Novel non-hyper-singular [i.e., only strongly-singular] boundary-integral-equations for the gradients of the acoustic velocity potential, involving only O(r−2) singularities at the surface of a 3-D body, are derived, for solving problems of acoustics governed by the Helmholtz differential equation. The gradients of the fundamental solution to the Helmholtz differential equation for the velocity...
متن کاملEighth International Undergraduate Summer Research Symposium
This project’s aim seeks to study the acceleration of numerical algorithms used to solve the Helmholtz equation with Dirichlet boundary conditions. The Helmholtz equation arises naturally in physical problems modeled by partial differential equations in space and time as a time-independent wave equation when applying the technique of separation of variables. Using Dirichlet boundary conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2016